Part of the Oxford Instruments Group
Expand

AFM for Energy Storage and Battery Research

Atomic force microscope image of a lithium battery electrode

With its ability to locally probe electrochemical processes at the nanoscale, atomic force microscopy is well-suited as a characterization tool for energy storage research. A variety of AFM techniques are being widely used to extend the energy density and lifetime of next-generation materials used in storage devices ranging from lithium ion batteries and supercapacitors to fuel cells. While it is perhaps an obvious choice for investigating the effect of nanostructure on device performance and reliability, AFM is also being used to study local ionic transport and reactivity.

Ask an AFM expert for more information
  • Electrochemical Strain Microscopy (ESM) enables studies of ionic transport, intercalation kinetics, and reactivity
  • In-situ studies of oxidation-reduction reactions with the Electrochemical Cell (available for the Cypher ES and MFP Family AFMs
  • High force sensitivity allows imaging of the electric double-layer at the electrode-electrolyte interface
  • Characterization of high-resolution nanostructure, allowing for the optimization of device performance
  • Turnkey glovebox solutions available
  • Lithium ion batteries
  • Fuel cells
  • Supercapacitors
  • Ionic liquid double layers
  • Electrode and separator materials
  • Electrode nanostructure
  • Electrochemistry
  • Morphological effects of charge-discharge cycling

T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, "In situ tracking of the nanoscale expansion of porous carbon electrodes," Energy Environ. Sci. 6, 225-231 (2013). doi:10.1039/c2ee23707e

N. Balke, E. A. Eliseev, S. Jesse, S. Kalnaus, C. Daniel, N. J. Dudney, A. N. Morozovska, and S. V. Kalinin, "Three-dimensional vector electrochemical strain microscopy," J. Appl. Phys. 112, 052020 (2012). doi:10.1063/1.4746085

J. M. Black, D. Walters, A. Labuda, G. Feng, P. C. Hillesheim, S. Dai, P. T. Cummings, S. V. Kalinin, R. Proksch, and N. Balke, "Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite," Nano Lett. 13, 5954-5960 (2013). doi:10.1021/nl4031083

A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, and R. Atkin, "Nanostructure of the Ionic Liquid-Graphite Stern Layer," ACS Nano 9, 7608-7620 (2015). doi:10.1021/acsnano.5b02921

H. Gao, F. Xiao, C. B. Ching, and H. Duan, "Flexible All-Solid-State Asymmetric Supercapacitors Based on Free-Standing Carbon Nanotube/Graphene and Mn3O4 Nanoparticle/Graphene Paper Electrodes," ACS Appl. Mater. Interfaces 4, 7020-7026 (2012). doi:10.1021/am302280b

S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, and S. V. Kalinin, "Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution," J. Electrochem. Soc. 158, A982 (2011). doi:10.1149/1.3604759

S. Kalinin, N. Balke, S. Jesse, A. Tselev, A. Kumar, T. M. Arruda, S. Guo, and R. Proksch, "Li-ion dynamics and reactivity on the nanoscale," Mater. Today 14, 548-558 (2011). doi:10.1016/s1369-7021(11)70280-2

A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, "Measuring oxygen reduction/evolution reactions on the nanoscale," Nat. Chem. 3, 707-713 (2011). doi:10.1038/nchem.1112

A. Kumar, D. Leonard, S. Jesse, F. Ciucci, E. A. Eliseev, A. N. Morozovska, M. D. Biegalski, H. M. Christen, A. Tselev, E. Mutoro, E. J. Crumlin, D. Morgan, Y. Shao-Horn, A. Borisevich, and S. V. Kalinin, "Spatially Resolved Mapping of Oxygen Reduction/Evolution Reaction on Solid-Oxide Fuel Cell Cathodes with Sub-10 nm Resolution," ACS Nano 7, 3808-3814 (2013). doi:10.1021/nn303239e

B. S. Lalia, Y. A. Samad, and R. Hashaikeh, "Nanocrystalline-cellulose-reinforced poly(vinylidenefluoride- co -hexafluoropropylene) nanocomposite films as a separator for lithium ion batteries," J. Appl. Polym. Sci. 126, E442-E448 (2012). doi:10.1002/app.36783

D. N. Leonard, A. Kumar, S. Jesse, M. D. Biegalski, H. M. Christen, E. Mutoro, E. J. Crumlin, Y. Shao-Horn, S. V. Kalinin, and A. Y. Borisevich, "Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (LaxSr1-x)CoO3-δ Cathodes," Adv. Energy Mater. 3, 788-797 (2013). doi:10.1002/aenm.201200681

S. S. Nonnenmann, and D. A. Bonnell, "Miniature environmental chamber enabling in situ scanning probe microscopy within reactive environments," Rev. Sci. Instrum. 84, 073707 (2013). doi:10.1063/1.4813317

I. Sirés, C. Low, C. P. de León, and F. Walsh, "The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions," Electrochim. Acta 55, 2163-2172 (2010). doi:10.1016/j.electacta.2009.11.051

B. Wang, J. Park, C. Wang, H. Ahn, and G. Wang, "Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors," Electrochim. Acta 55, 6812-6817 (2010). doi:10.1016/j.electacta.2010.05.086

B. Wang, Y. Wang, J. Park, H. Ahn, and G. Wang, "In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance," J. Alloys Compd. 509, 7778-7783 (2011). doi:10.1016/j.jallcom.2011.04.152

W. Yan, J. Y. Kim, W. Xing, K. C. Donavan, T. Ayvazian, and R. M. Penner, "Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage," Chem. Mater. 24, 2382-2390 (2012). doi:10.1021/cm3011474

D. M. Yu, S. T. Zhang, D. W. Liu, X. Y. Zhou, S. H. Xie, Q. F. Zhang, Y. Y. Liu, and G. Z. Cao, "Effect of manganese doping on Li-ion intercalation properties of V2O5 films," J. Mater. Chem. 20, 10841 (2010). doi:10.1039/c0jm01252a

J. Zhu, J. Feng, L. Lu, and K. Zeng, "In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe microscopy," J. Power Sources 197, 224-230 (2012). doi:10.1016/j.jpowsour.2011.08.115

J. Zhu, L. Lu, and K. Zeng, "Nanoscale Mapping of Lithium-Ion Diffusion in a Cathode within an All-Solid-State Lithium-Ion Battery by Advanced Scanning Probe Microscopy Techniques," ACS Nano 7, 1666-1675 (2013). doi:10.1021/nn305648j