Part of the Oxford Instruments Group
Expand

AFM for Semiconductor and Microelectronics Research

semiconductor transistor device imaged using scanning microwave impedance microscopy (sMIM)

The field of semiconductor physics and device electronics has evolved over the years to include chemistry, materials, computer science, all branches of engineering, and even biology. Atomic force microscopy has played a crucial role in many advances over the last 20 years. Asylum Research atomic force microscopes offer a wide range of techniques for these complicated devices and materials. No instruments on the market can match the breadth of materials and devices that investigators can interrogate with the MFP-3D and Cypher AFMs.

Ask an AFM expert for more information

Scanning Microwave Impedance Microscopy (sMIM)

  • Maps variations in local capacitance and resistance, as well as doping concentration (dC/dV) and microwave loss (dR/dV)

Conductive AFM (CAFM)

  • Measures current through the tip as a function of an applied sample bias

Kelvin Probe Force Microscopy (KPFM)

  • Accurately measures surface contact potential difference (CPD) based on differences in work function, presence of trapped charges, or voltage offsets

Electrostatic Force Microscopy (EFM)

  • Maps force gradients generated by local variation in capacitance and conductors embedded in insulating materials

Current Mapping with Fast Force Mapping

  • Measures current at an applied sample bias during the contact segment of a fast force curve

Nanoscale Time Dependent Dielectric Breakdown (nanoTDDB)

  • Detects breakdown voltage of dielectric thin films

Scanning Gate Microscopy

  • Maps the gates on devices to test uniformity and detect failures

Environmental Controls

  • The Cypher ES and its environmental cell can be used in a glove box to prevent environmental degradation of materials and devices as they are developed and analyzed for failures

Diffraction Limited Optics

  • Allow the investigator to find individual failure sites and devices for test and analysis

MacroBuilder

  • High level GUI coding gives users flexibility in automating measurements to optimize research time

sMIM

  • Characterize a wide range of linear and non-linear materials, including conductors, semiconductors, and insulators
  • Provide contrast based on material permittivity and conductivity
  • Map dopant concentrations and dopant types, with applications in failure analysis of microelectronic devices
  • Qualify carbon nanotubes exhibiting metallic vs. semimetallic behavior
  • Visualize buried structures based on capacitance variations measured at the surface
  • Characterize exotic nanowires and other novel nanostructures and nanodevices with < 50nm resolution

KPFM

  • Identify regions of a sample containing trapped charge
  • Monitor the uniformity of thin film coverage and thickness
  • Probe metallic nanostructures based on their work function
  • Characterize potential profiles of semiconductor junctions and heterostructures

EFM

  • Detect carbon nanotubes buried in an insulating matrix
  • Detect conductive inclusions in polymer blends

CAFM

  • Characterize the switching performance of access devices in non-volatile memory
  • Characterize oxide films for uniformity and defects
  • Measure photo-current on solar materials and devices
  • Measure resistance of nanowires and nanostructures

Current Mapping

  • Current-voltage (I-V) curves mapped over an n×n array for complete characterization of semiconductor spreading resistance
  • Fast current mapping of materials using fast force curves in conjunction with current mapping to image delicate devices and materials
  • Analysis suite that includes mobility, stiffness, and other critical properties for semiconductor materials and devices

"Biodegradable electronic systems in 3D, heterogeneously integrated formats," J. K. Chang, H. P. Chang, Q. Guo, J. Koo, C. I. Wu, and J. A. Rogers, Adv. Mater. 30, 1704955 (2018). https://doi.org/10.1002/adma.201704955

"Local characterization of mobile charge carriers by two electrical AFM modes: multi-harmonic EFM versus sMIM," L. Lei, R. Xu , S. Ye, X. Wang, K. Xu, S. Hussain, Y. J. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, J. Phys. Commun. 2, 025013 (2018). https://doi.org/10.1088/2399-6528/aaa85f

"Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide," V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, Nature 554, 500 (2018). https://doi.org/10.1038/nature25747

"Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors," R. Giridharagopal, L. Q. Flagg, J. S. Harrison, M. E. Ziffer, J. Onorato, C. K. Luscombe, and D. S. Ginger, Nat. Mater. 16, 737 (2017). https://doi.org/10.1038/nmat4918

"Multifunctional logic demonstrated in a flexible multigate oxide‐based electric‐double‐layer transistor on paper substrate," F. Shao, P. Feng, C. Wan, X. Wan, Y. Yang, Y. Shi, and Q. Wan, Adv. Electron. Mater. 3, 1600509 (2017). https://doi.org/10.1002/aelm.201600509

"Determining the resolution of scanning microwave impedance microscopy using atomic-precision buried donor structures," D. A. Scrymgeour, A. Baca, K. Fishgrab, R. J. Simonson, M. Marshall, E. Bussmann, C. Y. Nakakura, M. Anderson, and S. Misra, Appl. Surf. Sci. 423, 1097 (2017). https://doi.org/10.1016/j.apsusc.2017.06.261

"Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions," W. J. Hu, Z. Wang, W. Yu, and T. Wu, Nat. Comm. 7, 10808 (2016). https://doi.org/10.1038/ncomms10808

"Analysis of quantum conductance, read disturb and switching statistics in HfO2 RRAM using conductive AFM," A. Ranjan, N. Raghavan, J. Molina, S. J. O'Shea, K. Shubhakar, and K. L. Pey, Microelectron. Reliab. 64, 172 (2016). https://doi.org/10.1016/j.microrel.2016.07.112

"Material removal mechanism of copper chemical mechanical polishing in a periodate-based slurry," J. Cheng, T. Wang, Y. He, and X. Lu, Appl. Surf. Sci. 337, 130 (2015). https://doi.org/10.1016/j.apsusc.2015.02.076

"Carrier density modulation in a germanium heterostructure by ferroelectric switching," P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu, R. K. Vasudevan, M. B. Okatan, S. Jesse, T. Aoki, M. R. McCartney, D. J. Smith, S. V. Kalinin, K. Lai, and A. A. Demkov, Nat. Commun. 6, 6067 (2015). https://doi.org/10.1038/ncomms7067

"Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors," D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y. Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B. Xu, and X. Wang, Nat. Commun. 5, 5162 (2014). https://doi.org/10.1038/ncomms6162

"High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers," H.-R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, Adv. Mater. 26, 2993 (2014). https://doi.org/10.1002/adma.201305084

"Effective passivation of exfoliated black phosphorus transistors against ambient degradation," J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Nano Lett. 14, 6964 (2014). https://doi.org/10.1021/nl5032293

"Low-voltage self-assembled monolayer field-effect transistors on flexible substrates," T. Schmaltz, A. Y. Amin, A. Khassanov, T. Meyer-Friedrichsen, H.-G. Steinrück, A. Magerl, J. J. Segura, K. Voïtchovsky, F. Stellacci, and M. Halik, Adv. Mater. 25, 4511 (2013). https://doi.org/10.1002/adma.201301176

"Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes," S. H. Jin, S. N. Dunham, J. Song, X. Xie, J. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M. A. Wahab, M. Menon, E. Cho, K. L. Grosse, D. J. Lee, H. U. Chung, E. Pop, M. A. Alam, W. P. King, Y. Huang and J. A. Rogers, Nat. Nanotechnol. 8, 347 (2013). https://doi.org/10.1038/nnano.2013.56

"Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions," Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nat. Mater. 12, 617 (2013). https://doi.org/10.1038/nmat3649

"Strain-gated piezotronic transistors based on vertical zinc oxide nanowires," W. Han, Y. Zhou, Y. Zhang, C.-Y. Chen, L. Lin, X. Wang, S. Wang, and Z. L. Wang, ACS Nano 6, 3760 (2012). https://doi.org/10.1021/nn301277m

"Solid-state memories based on ferroelectric tunnel junctions," A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthélémy, Nat. Nanotechnol. 7, 101 (2012). https://doi.org/10.1038/nnano.2011.213

"Single-layer MoS2 transistors," B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279

"Creation of a two-dimensional electron gas at an oxide interface on silicon," J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010). https://doi.org/10.1038/ncomms1096

"High resolution, high sensitivity inorganic resists," J. Stowers and D. A. Keszler, Microelectron. Eng. 86, 730 (2009). https://doi.org/10.1016/j.mee.2008.11.034

"Tailoring GaN semiconductor surfaces with biomolecules," E. Estephan, C. Larroque, F. J. G. Cuisinier, Z. Bálint, and C. Gergely, J. Phys. Chem. B 112, 8799 (2008). https://doi.org/10.1021/jp804112y

"Organic single-crystal field-effect transistors of a soluble anthradithiophene," O. D. Jurchescu, S. Subramanian, R. J. Kline, S. D. Hudson, J. E. Anthony, T. N. Jackson, and D. J. Gundlach, Chem. Mater. 20, 6733 (2008). https://doi.org/10.1021/cm8021165

"Hunting the origins of line width roughness with chemical force microscopy," J. T. Woodward, J. Hwang, V. M. Prabhu, and K.-W. Choi, in CP931, Frontiers of Characterization and Metrology for Nanoelectronics (eds. D. G. Seiler, A. C. Diebold, R. McDonald, C. M. Gamer, D. Herr, R. P. Khosla, and E. M. Secula), AIP Conference Proceedings 931, 413 (2007). https://doi.org/10.1063/1.2799409

"Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding," L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, CIRP Ann. Manuf. Technol. 55, 313 (2006). https://doi.org/10.1016/S0007-8506(07)60424-7