Part of the Oxford Instruments Group

AFM for Semiconductor and Microelectronics Research

semiconductor transistor device imaged using scanning microwave impedance microscopy (sMIM)

The field of semiconductor physics and device electronics has evolved over the years to include chemistry, materials, computer science, all branches of engineering, and even biology. Atomic force microscopy has played a crucial role in many advances over the last 20 years. Asylum Research atomic force microscopes offer a wide range of techniques for these complicated devices and materials. No instruments on the market can match the breadth of materials and devices that investigators can interrogate with the MFP-3D and Cypher AFMs.

Ask an AFM expert for more information

Scanning Microwave Impedance Microscopy (sMIM)

  • Maps variations in local capacitance and resistance, as well as doping concentration (dC/dV) and microwave loss (dR/dV)

Conductive AFM (CAFM)

  • Measures current through the tip as a function of an applied sample bias

Kelvin Probe Force Microscopy (KPFM)

  • Accurately measures surface contact potential difference (CPD) based on differences in work function, presence of trapped charges, or voltage offsets

Electrostatic Force Microscopy (EFM)

  • Maps force gradients generated by local variation in capacitance and conductors embedded in insulating materials

Current Mapping with Fast Force Mapping

  • Measures current at an applied sample bias during the contact segment of a fast force curve

Nanoscale Time Dependent Dielectric Breakdown (nanoTDDB)

  • Detects breakdown voltage of dielectric thin films

Scanning Gate Microscopy

  • Maps the gates on devices to test uniformity and detect failures

Environmental Controls

  • The Cypher ES and its environmental cell can be used in a glove box to prevent environmental degradation of materials and devices as they are developed and analyzed for failures

Diffraction Limited Optics

  • Allow the investigator to find individual failure sites and devices for test and analysis


  • High level GUI coding gives users flexibility in automating measurements to optimize research time


  • Characterize a wide range of linear and non-linear materials, including conductors, semiconductors, and insulators
  • Provide contrast based on material permittivity and conductivity
  • Map dopant concentrations and dopant types, with applications in failure analysis of microelectronic devices
  • Qualify carbon nanotubes exhibiting metallic vs. semimetallic behavior
  • Visualize buried structures based on capacitance variations measured at the surface
  • Characterize exotic nanowires and other novel nanostructures and nanodevices with < 50nm resolution


  • Identify regions of a sample containing trapped charge
  • Monitor the uniformity of thin film coverage and thickness
  • Probe metallic nanostructures based on their work function
  • Characterize potential profiles of semiconductor junctions and heterostructures


  • Detect carbon nanotubes buried in an insulating matrix
  • Detect conductive inclusions in polymer blends


  • Characterize the switching performance of access devices in non-volatile memory
  • Characterize oxide films for uniformity and defects
  • Measure photo-current on solar materials and devices
  • Measure resistance of nanowires and nanostructures

Current Mapping

  • Current-voltage (I-V) curves mapped over an n×n array for complete characterization of semiconductor spreading resistance
  • Fast current mapping of materials using fast force curves in conjunction with current mapping to image delicate devices and materials
  • Analysis suite that includes mobility, stiffness, and other critical properties for semiconductor materials and devices

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthélémy, "Solid-state memories based on ferroelectric tunnel junctions," Nat. Nanotechnol. 7, 101-104 (2011). doi:10.1038/nnano.2011.213

G. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Bark, C. M. Folkman, J.-W. Park, C.-B. Eom, G. Medeiros-Ribeiro, and J. Levy, "Sketched oxide single-electron transistor," Nat. Nanotechnol. 6, 343-347 (2011). doi:10.1038/nnano.2011.56

E. Estephan, C. Larroque, F. J. G. Cuisinier, Z. Balint, and C. Gergely, "Tailoring GaN Semiconductor Surfaces with Biomolecules," J. Phys. Chem. B 112, 8799-8805 (2008). doi:10.1021/jp804112y

J. Fan, J. D. Yuen, W. Cui, J. Seifter, A. R. Mohebbi, M. Wang, H. Zhou, A. Heeger, and F. Wudl, "High-Hole-Mobility Field-Effect Transistors Based on Co- Benzobisthiadiazole-Quaterthiophene," Adv. Mater. 24, 6164-6168 (2012). doi:10.1002/adma.201202195

E. J. Feldmeier, M. Schidleja, C. Melzer, and H. von Seggern, "A Color-Tuneable Organic Light-Emitting Transistor," Adv. Mater. 22, 3568-3572 (2010). doi:10.1002/adma.201000980

W. Han, Y. Zhou, Y. Zhang, C.-Y. Chen, L. Lin, X. Wang, S. Wang, and Z. L. Wang, "Strain-Gated Piezotronic Transistors Based on Vertical Zinc Oxide Nanowires," ACS Nano 6, 3760-3766 (2012). doi:10.1021/nn301277m

D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y. Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B. Xu, and X. Wang, "Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors," Nat. Commun. 5, 5162 (2014). doi:10.1038/ncomms6162

O. D. Jurchescu, S. Subramanian, R. J. Kline, S. D. Hudson, J. E. Anthony, T. N. Jackson, and D. J. Gundlach, "Organic Single-Crystal Field-Effect Transistors of a Soluble Anthradithiophene," Chem. Mater. 20, 6733-6737 (2008). doi:10.1021/cm8021165

V. S. Kale, R. R. Prabhakar, S. S. Pramana, M. Rao, C.-H. Sow, K. B. Jinesh, and S. G. Mhaisalkar, "Enhanced electron field emission properties of high aspect ratio silicon nanowire–zinc oxide core–shell arrays," Phys. Chem. Chem. Phys. 14, 4614 (2012). doi:10.1039/c2cp40238f

L. A. Kehrer, E. J. Feldmeier, C. Siol, D. Walker, C. Melzer, and H. Seggern, "A new method to invert top-gate organic field-effect transistors for Kelvin probe investigations," Appl. Phys. A 112, 431-436 (2012). doi:10.1007/s00339-012-7426-0

S. Lee, H. Park, and D. C. Paine, "The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In-Zn-O thin film transistors," Thin Solid Films 520, 3769-3773 (2012). doi:10.1016/j.tsf.2011.11.067

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol. 6, 147-150 (2011). doi:10.1038/nnano.2010.279

T. Schmaltz, A. Y. Amin, A. Khassanov, T. Meyer-Friedrichsen, H.-G. Steinrück, A. Magerl, J. J. Segura, K. Voitchovsky, F. Stellacci, and M. Halik, "Low-Voltage Self-Assembled Monolayer Field-Effect Transistors on Flexible Substrates," Adv. Mater. 25, 4511-4514 (2013). doi:10.1002/adma.201301176

C. Srinivasan, J. Lee, F. Papadimitrakopoulos, L. Silbart, M. Zhao, and D. Burgess, "Labeling and Intracellular Tracking of Functionally Active Plasmid DNA with Semiconductor Quantum Dots," Mol. Ther. 14, 192-201 (2006). doi:10.1016/j.ymthe.2006.03.010

H.-R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, "High-Mobility Field-Effect Transistors Fabricated with Macroscopic Aligned Semiconducting Polymers," Adv. Mater. 26, 2993-2998 (2014). doi:10.1002/adma.201305084

H.-R. Tseng, L. Ying, B. B. Y. Hsu, L. A. Perez, C. J. Takacs, G. C. Bazan, and A. J. Heeger, "High Mobility Field Effect Transistors Based on Macroscopically Oriented Regioregular Copolymers," Nano Lett. 12, 6353-6357 (2012). doi:10.1021/nl303612z

Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso, and M. Yamanishi, "Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III-V semiconductor substrates," J. Vac. Sci. Technol. B 26, 1848-1851 (2008). doi:10.1116/1.2993176

Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, "Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions," Nat. Mater. 12, 617-621 (2013). doi:10.1038/nmat3649

D. Wood, I. Hancox, T. S. Jones, and N. R. Wilson, "Quantitative Nanoscale Mapping with Temperature Dependence of the Mechanical and Electrical Properties of Poly(3-hexylthiophene) by Conductive Atomic Force Microscopy," J. Phys. Chem. C 119, 11459-11467 (2015). doi:10.1021/acs.jpcc.5b02197

J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation," Nano Lett. 14, 6964-6970 (2014). doi:10.1021/nl5032293