Part of the Oxford Instruments Group
Expand

AFM Tools for Piezoelectrics and Ferroelectrics Research

piezoresponse force microscopy image taken with an Asylum Research scanning probe microscope

Piezoresponse force microscopy (PFM) is an atomic force microscopy technique that can be used to characterize the electromechanical coupling underlying the functionality of many material systems, including piezoelectrics, ferroelectrics, and certain biological materials. An electrical stimulus is applied locally to the sample through the AFM tip while the mechanical response, on the order of ~1-100 pm/V, is simultaneously measured.  This technique is relevant to both basic materials science research and a rich field of applied technologies. Asylum Research is recognized as the world leader in commercial PFM technology by providing crosstalk-free, high sensitivity PFM measurements using a variety of advanced and proprietary measurement techniques and capabilities.

Now with the Interferometric Displacement Sensor (IDS) Option for the Cypher AFM, d33 measurements are more reproducible and artifact-free.  Interferometric detection directly measures cantilever deflection instead of cantilever angle that is utilized in conventional optical beam detection (OBD). IDS eliminates the artifacts due to electrostatic coupling. Learn how IDS improves PFM measurements by downloading the white paper below.

Ask an AFM expert for more information
  • Image the sample's electromechanical response at a fixed frequency or use Dual AC Resonance Tracking (DART) to achieve higher sensitivity by using resonance enhancement.
  • High tip bias voltages possible for enhanced sensitivity - up to  ±150 V on Cypher™ and MFP‑3D Infinity™ and up to ±220 V on MFP‑3D Origin™ and Origin+.
  • Switching spectroscopy to generate piezoresponse amplitude "butterfly" loops and phase "hysteresis" loops.  
  • Built-in lithography tools to write domains and complex patterns. Tip bias can be varied continuously using the grayscale of an imported bitmap.  
  • Vector PFM to reconstruct real space polarization orientation.
  • Compatible with various environmental stages and accessories to allow for heating and cooling, or to subject the sample to humidity, gas perfusion, or applied magnetic fields.

Piezoelectric Materials

  • Microelectromechanical systems (MEMS)
  • Sensors and actuators
  • Energy storage and harvesting
  • RF filters and switches
  • Sonar
  • Balance and frequency standards
  • Giant k dielectrics
  • Capacitors

Ferroelectric Materials

  • Domain engineering
  • Non-volatile memory
  • Data storage devices
  • Domain energetics and dynamics

Fundamental Materials Science

  • Domains
  • Phase transitions and critical phenomena
  • Size effects
  • Nucleation dynamics
  • Multiferroics
  • Ferroelectric polymers
  • Liquid crystals
  • Composites
  • Relaxor ferroelectrics

Bio-electromechanics

  • Cardiac
  • Auditory
  • Cell signaling
  • Structural electromechanics
  • Biosensors

"Metal-free three-dimensional perovskite ferroelectrics," H.-Y. Ye, Y.-Y. Tang, P.-F. Li, W.-Q. Liao, J.-X. Gao, X.-N. Hua, H. Cai, P.-P. Shi, Y.-M. You, and R.-G. Xiong, Science 361, 151 (2018). https://doi.org/10.1126/science.aas9330

"Higher-eigenmode piezoresponse force microscopy: a path towards increased sensitivity and the elimination of electrostatic artifacts," G. A. MacDonald, F. W. DelRio, and J. P. Killgore, Nano Futures 2, 015005 (2018). https://doi.org/10.1088/2399-1984/aab2bc

"Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects," T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G. Tavcar, M. Makarovic, J. Walker, B. Malic, and D. Damjanovic, Nat. Mater. 16, 322 (2017). https://doi.org/10.1038/nmat4799

"Nanoscale domain imaging and local piezoelectric coefficient d33 studies of single piezoelectric polymeric nanofibers," X. Liu, M. Deng, and X. Wang, Mater. Lett. 189, 66 (2017). https://doi.org/10.1016/j.matlet.2016.11.044

"Enhancing ion migration in grain boundaries of hybrid organic–inorganic perovskites by chlorine," B. Yang, C. C. Brown, J. Huang, L. Collins, X. Sang, R. R. Unocic, S. Jesse, S. V. Kalinin, A. Belianinov, J. Jakowski, D. B. Geohegan, B. G. Sumpter, K. Xiao, and O. S. Ovchinnikova, Adv. Funct. Mater. 27, 1700749 (2017). https://doi.org/10.1002/adfm.201700749

"Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films," J. Chen, Z. Tang, Y. Bai, and S. Zhao, J. Alloys Compd. 675, 257 (2016). https://doi.org/10.1016/j.jallcom.2016.03.119

"Ferroelastic fingerprints in methylammonium lead iodide perovskite," I. M. Hermes, S. A. Bretschneider, V. W. Bergmann, D. Li, A. Klasen, J. Mars, W. Tremel, F. Laquai, H.-J. Butt, M. Mezger, R. Berger, B. J. Rodriguez, and S. A. L. Weber, J. Phys. Chem. C 120, 5724 (2016). https://doi.org/10.1021/acs.jpcc.5b11469

"Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes," F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Nat. Commun. 7, 12357 (2016). https://doi.org/ 10.1038/ncomms12357

"Controlling domain wall motion in ferroelectric thin films," L. J. McGilly, P. Yudin, L. Feigl, A. K. Tagantsev, and N. Setter, Nat. Nanotechnol. 10, 145 (2015). https://doi.org/10.1038/nnano.2014.320

"Ferroelectric polarization reversal via successive ferroelastic transitions," R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, Nat. Mater. 14, 79 (2015). https://doi.org/10.1038/nmat4119

"Deterministic switching of ferromagnetism at room temperature using an electric field," J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D. C. Ralph, D. G. Schlom, J. Iñiguez, B. D. Huey, and R. Ramesh, Nature 516, 370 (2014). https://doi.org/10.1038/nature14004

"Tuning of the depolarization field and nanodomain structure in ferroelectric thin films," C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J.-M. Triscone, Nano Lett. 14, 4205 (2014). https://doi.org/10.1021/nl404734z

"Non-volatile memory based on the ferroelectric photovoltaic effect," R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, Nat. Commun. 4, 1990 (2013). https://doi.org/10.1038/ncomms2990

"Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions," Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nat. Mater. 12, 617 (2013). https://doi.org/10.1038/nmat3649

"Ferroelectric order in individual nanometre-scale crystals," M. J. Polking, M.-G. Han, A. Yourdkhani, V. Petkov, C. F. Kisielowski, V. V. Volkov, Y. Zhu, G. Caruntu, A. P. Alivisatos, and R. Ramesh, Nat. Mater. 11, 700 (2012). https://doi.org/10.1038/nmat3371

"Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers," D. Pantel, H. Lu, S. Goetze, P. Werner, D. J. Kim, A. Gruverman, D. Hesse, and M. Alexe, Appl. Phys. Lett. 100, 232902 (2012). https://doi.org/10.1063/1.4726120

"Structural and piezoelectric characteristics of BNT–BT0.05 thin films processed by sol–gel technique," M. Cernea, L. Trupina, C. Dragoi, B. S. Vasile, and R. Trusca, J. Alloys Compd. 515, 166 (2012). https://doi.org/10.1016/j.jallcom.2011.11.129

"Solid-state memories based on ferroelectric tunnel junctions," A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Nat. Nanotechnol. 7, 101 (2011). https://doi.org/10.1038/nnano.2011.213

"High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers," P. Sharma, T.J. Reece, S. Ducharme, and A. Gruverman, Nano Lett. 11, 1970 (2011). https://doi.org/10.1021/nl200221z

"Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates," X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang, and J. A. Rogers, ACS Nano 5, 3326 (2011). https://doi.org/10.1021/nn200477q

"Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films," D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, Nano Lett. 10, 2555 (2010). https://doi.org/10.1021/nl101187a

"Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films," F. Yan, T. J. Zhu, M. O. Lai, and L. Lu, Scr. Mater. 63, 780 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.013

"Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale," A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Y. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, and E. Y. Tsymbal, Nano Lett. 9, 3539 (2009). https://doi.org/10.1021/nl901754t

"Dual-frequency resonance-tracking atomic force microscopy," B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, Nanotechnology 18, 475504 (2007). https://doi.org/10.1088/0957-4484/18/47/475504

"Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment," J. Song, J. Zhou, and Z. L. Wang, Nano Lett. 6, 1656 (2006). https://doi.org/ 10.1021/nl060820v