Part of the Oxford Instruments Group
Expand

AFM Tools for Piezoelectrics and Ferroelectrics Research

piezoresponse force microscopy image taken with an Asylum Research scanning probe microscope

Piezoresponse force microscopy (PFM) is an atomic force microscopy technique that can be used to characterize the electromechanical coupling underlying the functionality of many material systems, including piezoelectrics, ferroelectrics, and certain biological materials. An electrical stimulus is applied locally to the sample through the AFM tip while the mechanical response, on the order of ~1-100 pm/V, is simultaneously measured.  This technique is relevant to both basic materials science research and a rich field of applied technologies. Asylum Research is recognized as the world leader in commercial PFM technology by providing crosstalk-free, high sensitivity PFM measurements using a variety of advanced and proprietary measurement techniques and capabilities.

Ask an AFM expert for more information
  • Image the sample's electromechanical response at a fixed frequency or by tracking resonance (with DART or Band Excitation).
  • High tip bias voltages possible for enhanced sensitivity - up to  ±150 V on Cypher™ and MFP‑3D Infinity™ and up to ±220 V on MFP‑3D Origin™ and Origin+.
  • Switching spectroscopy to generate piezoresponse amplitude "butterfly" loops and phase "hysteresis" loops.  
  • Built-in lithography tools to write domains and complex patterns. Tip bias can be varied continuously using the grayscale of an imported bitmap.  
  • Vector PFM to reconstruct real space polarization orientation.
  • Compatible with various environmental stages and accessories to allow for heating and cooling, or to subject the sample to humidity, gas perfusion, or applied magnetic fields.

Piezoelectric Materials

  • Microelectromechanical systems (MEMS)
  • Sensors and actuators
  • Energy storage and harvesting
  • RF filters and switches
  • Sonar
  • Balance and frequency standards
  • Giant k dielectrics
  • Capacitors

Ferroelectric Materials

  • Domain engineering
  • Non-volatile memory
  • Data storage devices
  • Domain energetics and dynamics

Fundamental Materials Science

  • Domains
  • Phase transitions and critical phenomena
  • Size effects
  • Nucleation dynamics
  • Multiferroics
  • Ferroelectric polymers
  • Liquid crystals
  • Composites
  • Relaxor ferroelectrics

Bio-electromechanics

  • Cardiac
  • Auditory
  • Cell signaling
  • Structural electromechanics
  • Biosensors

P. Bintachitt, S. Jesse, D. Damjanovic, Y. Han, I. M. Reaney, S. Trolier-McKinstry, and S. V. Kalinin, "Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics," PNAS 107, 7219-7224 (2010). doi:10.1073/pnas.0913172107

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthélémy, "Solid-state memories based on ferroelectric tunnel junctions," Nat. Nanotechnol. 7, 101-104 (2011). doi:10.1038/nnano.2011.213

A. R. Damodaran, S. Lee, J. Karthik, S. MacLaren, and L. W. Martin, "Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films," Phys. Rev. B 85, 024113 (2012). doi:10.1103/physrevb.85.024113

A. R. Damodaran, C.-W. Liang, Q. He, C.-Y. Peng, L. Chang, Y.-H. Chu, and L. W. Martin, "Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO3 Thin Films," Adv. Mater. 23, 3170-3175 (2011). doi:10.1002/adma.201101164

A. Duk, M. Schmidbauer, and J. Schwarzkopf, "Anisotropic one-dimensional domain pattern in NaNbO3epitaxial thin films grown on (110) TbScO3," Appl. Phys. Lett. 102, 091903 (2013). doi:10.1063/1.4794405

X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang, and J. A. Rogers, "Stretchable Ferroelectric Nanoribbons with Wavy Configurations on Elastomeric Substrates," ACS Nano 5, 3326-3332 (2011). doi:10.1021/nn200477q

A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Y. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, and E. Y. Tsymbal, "Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale," Nano Lett. 9, 3539-3543 (2009). doi:10.1021/nl901754t

R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, "Non-volatile memory based on the ferroelectric photovoltaic effect," Nat. Commun. 4, 1990 (2013). doi:10.1038/ncomms2990

J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D. C. Ralph, D. G. Schlom, J. Íñiguez, B. D. Huey, and R. Ramesh, "Deterministic switching of ferromagnetism at room temperature using an electric field," Nature 516, 370-373 (2014). doi:10.1038/nature14004

C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J.-M. Triscone, "Tuning of the Depolarization Field and Nanodomain Structure in Ferroelectric Thin Films," Nano Lett. 14, 4205-4211 (2014). doi:10.1021/nl404734z

Y. Liu, H.-L. Cai, M. Zelisko, Y. Wang, J. Sun, F. Yan, F. Ma, P. Wang, Q. N. Chen, H. Zheng, X. Meng, P. Sharma, Y. Zhang, and J. Li, "Ferroelectric switching of elastin," PNAS 111, E2780-E2786 (2014). doi:10.1073/pnas.1402909111

D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, "Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO3 Thin Films," Nano Lett. 10, 2555-2561 (2010). doi:10.1021/nl101187a

L. J. McGilly, P. Yudin, L. Feigl, A. K. Tagantsev, and N. Setter, "Controlling domain wall motion in ferroelectric thin films," Nat. Nanotechnol. 10, 145-150 (2015). doi:10.1038/nnano.2014.320

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, "Room Temperature Nanoscale Ferroelectricity in Magnetoelectric GaFeO3 Epitaxial Thin Films," Phys. Rev. Lett. 111, 087601 (2013). doi:10.1103/physrevlett.111.087601

M. J. Polking, M.-G. Han, A. Yourdkhani, V. Petkov, C. F. Kisielowski, V. V. Volkov, Y. Zhu, G. Caruntu, A. P. Alivisatos, and R. Ramesh, "Ferroelectric order in individual nanometre-scale crystals," Nat. Mater. 11, 700-709 (2012). doi:10.1038/nmat3371

B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, "Dual-frequency resonance-tracking atomic force microscopy," Nanotechnology 18, 475504 (2007). doi:10.1088/0957-4484/18/47/475504

K. Seal, S. Jesse, M. P. Nikiforov, S. V. Kalinin, I. Fujii, P. Bintachitt, and S. Trolier-McKinstry, "Spatially Resolved Spectroscopic Mapping of Polarization Reversal in Polycrystalline Ferroelectric Films: Crossing the Resolution Barrier," Phys. Rev. Lett. 103, 057601 (2009). doi:10.1103/physrevlett.103.057601

J. Sinsheimer, S. J. Callori, B. Bein, Y. Benkara, J. Daley, J. Coraor, D. Su, P. W. Stephens, and M. Dawber, "Engineering Polarization Rotation in a Ferroelectric Superlattice," Phys. Rev. Lett. 109, 167601 (2012). doi:10.1103/physrevlett.109.167601

S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthélémy, and M. Bibes, "Interface-induced room-temperature multiferroicity in BaTiO3," Nat. Mater. 10, 753-758 (2011). doi:10.1038/nmat3098

Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, "Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions," Nat. Mater. 12, 617-621 (2013). doi:10.1038/nmat3649