Part of the Oxford Instruments Group

AFM for Biomaterials Research

Coronary stent surface imaged using atomic force microscopy

Atomic force microscopy allows researchers to characterize the topography and mechanical properties of biomaterials. The AFM can accurately measure surface roughness and microstructure as a function of composition and processing variables. Biomaterials can also be inspected after in vitro testing or after explantation to assess changes in surface features. A wide range of AFM techniques can be applied to measure the stiffness, moduli, and dissipation of biomaterials.

Ask an AFM expert for more information
  • Measure surface morphology / surface roughness
  • Measure material properties (elastic modulus, loss modulus, hardness)
  • Measure surface changes during or after exposure to liquids (e.g. as related to biocompatibility)
  • Implants
  • Drug coatings (stents, catheters, etc.)
  • Anti-fouling coatings (catheters, implants, biosensors, etc.)
  • Biomineralization studies
  • Tissue engineering and scaffold engineering

J. Chang, X.-F. Peng, K. Hijji, J. Cappello, H. Ghandehari, S. D. Solares, and J. Seog, "Nanomechanical Stimulus Accelerates and Directs the Self-Assembly of Silk-Elastin-like Nanofibers," J. Am. Chem. Soc. 133, 1745-1747 (2011). doi:10.1021/ja110191f

B. Ercan, E. Taylor, E. Alpaslan, and T. J. Webster, "Diameter of titanium nanotubes influences anti-bacterial efficacy," Nanotechnology 22, 295102 (2011). doi:10.1088/0957-4484/22/29/295102

N. Hassan, J. Maldonado-Valderrama, A. P. Gunning, V. J. Morris, and J. M. Ruso, "Surface Characterization and AFM Imaging of Mixed Fibrinogen-Surfactant Films," J Phys. Chem. B 115, 6304-6311 (2011). doi:10.1021/jp200835j

N. Holten-Andersen, G. E. Fantner, S. Hohlbauch, J. H. Waite, and F. W. Zok, "Protective coatings on extensible biofibres," Nat. Mater. 6, 669-672 (2007). doi:10.1038/nmat1956

O. L. Katsamenis, H. M. Chong, O. G. Andriotis, and P. J. Thurner, "Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level," J. Mech. Behav. Biomed. Mater. 17, 152-165 (2013). doi:10.1016/j.jmbbm.2012.08.016

S. F. Lamolle, M. Monjo, S. P. Lyngstadaas, J. E. Ellingsen, and H J. Haugen, "Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance," J. Biomed. Mater. Res. 88A, 581-588 (2009). doi:10.1002/jbm.a.31898

M. Launspach, K. Rückmann, M. Gummich, H. Rademaker, H. Doschke, M. Radmacher, and M. Fritz, "Immobilisation and characterisation of the demineralised, fully hydrated organic matrix of nacre – An atomic force microscopy study," Micron 43, 1351-1363 (2012). doi:10.1016/j.micron.2012.03.014

S. Marchesan, C. D. Easton, K. E. Styan, L. J. Waddington, F. Kushkaki, L. Goodall, K. M. McLean, J. S. Forsythe, and P. G. Hartley, "Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials," Nanoscale 6, 5172 (2014). doi:10.1039/c3nr06752a

A. A. Poundarik, T. Diab, G. E. Sroga, A. Ural, A. L. Boskey, C. M. Gundberg, and D. Vashishth, "Dilatational band formation in bone," PNAS 109, 19178-19183 (2012). doi:10.1073/pnas.1201513109

Y.-T. Sul, D. H. Kwon, B.-S. Kang, S.-J. Oh, and C. Johansson, "Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants," Clin. Oral Implants Res. 24, 8-19 (2011). doi:10.1111/j.1600-0501.2011.02355.x

K. Tai, M. Dao, S. Suresh, A. Palazoglu, and C. Ortiz, "Nanoscale heterogeneity promotes energy dissipation in bone," Nat. Mater. 6, 454-462 (2007). doi:10.1038/nmat1911

K. Videm, S. Lamolle, M. Monjo, J. E. Ellingsen, S. P. Lyngstadaas, and H J. Haugen, "Hydride formation on titanium surfaces by cathodic polarization," Appl. Surf. Sci. 255, 3011-3015 (2008). doi:10.1016/j.apsusc.2008.08.090

R. E. Wilusz, L. E. DeFrate, and F. Guilak, "Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage," J. R. Soc. Interface 9, 2997-3007 (2012). doi:10.1098/rsif.2012.0314