Part of the Oxford Instruments Group
Expand

AFM for Polymer Science

Modulus map of a polymer blend

Polymers are ubiquitous in everyday life and the subject of much materials research. Polymer properties are varied and atomic force microscopy is an excellent tool to study them on many levels. In addition to accurate measurement of polymer film topography, the wide range of AFM techniques available on Asylum Research instruments allows for study of diverse polymer properties ranging from molecular chain arrangement in crystallites to domain modulus and conductivity.

Ask an AFM expert for more information

Capabilities

  • Surface morphology and roughness measurements
  • Quantitative nanomechanical properties including viscoelasticity (AM-FM and CR-DART)
  • Fast imaging for observation of crystallization and melting processes
  • Controlled heating and cooling of samples
  • Electrical measurements such as photoconductivity and electrochemical strain
  • Environmental control of gas type and humidity around the sample
  • Thermal analysis (Ztherm)
  • Built-in lithography tools
  • Single molecule force spectroscopy experiments

Common Uses

  • Nanomechanical (modulus, viscoelasticity) properties of components in polymer blends and polymer composites
  • Commercial packaging quality testing
  • Measurement of layer thickness and uniformity
  • Material strain testing
  • Organic electronics - photoconductivity of organic solar cells
  • Single chain polymer stretching  
  • Thermal phase transitions- melting and crystallization

D. C. Coffey, and D. S. Ginger, "Time-resolved electrostatic force microscopy of polymer solar cells," Nat. Mater. 5, 735-740 (2006). doi:10.1038/nmat1712

A. Elbourne, K. Voïtchovsky, G. G. Warr, and R. Atkin, "Ion structure controls ionic liquid near-surface and interfacial nanostructure," Chem. Sci. 6, 527-536 (2015). doi:10.1039/c4sc02727b

A. Gelmi, M. J. Higgins, and G. G. Wallace, "Resolving Sub-Molecular Binding and Electrical Switching Mechanisms of Single Proteins at Electroactive Conducting Polymers," Small 9, 393-401 (2012). doi:10.1002/smll.201201686

R. Giridharagopal, G. Shao, C. Groves, and D. S. Ginger, "New SPM techniques for analyzing OPV materials," Mater. Today 13, 50-56 (2010). doi:10.1016/s1369-7021(10)70165-6

T. Gkourmpis, C. Svanberg, S. K. Kaliappan, W. Schaffer, M. Obadal, G. Kandioller, and D. Tranchida, "Improved electrical and flow properties of conductive polyolefin blends: Modification of poly(ethylene vinyl acetate) copolymer/carbon black with ethylene–propylene copolymer," Eur. Polym. J. 49, 1975-1983 (2013). doi:10.1016/j.eurpolymj.2013.03.003

C. A. Grant, A. Alfouzan, T. Gough, P. C. Twigg, and P. D. Coates, "Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM)," Micron 44, 174-178 (2013). doi:10.1016/j.micron.2012.06.004

E. T. Herruzo, A. P. Perrino, and R. Garcia, "Fast nanomechanical spectroscopy of soft matter," Nat. Commun. 5, 3126 (2014). doi:10.1038/ncomms4126

M. J. Higgins, W. Grosse, K. Wagner, P. J. Molino, and G. G. Wallace, "Reversible Shape Memory of Nanoscale Deformations in Inherently Conducting Polymers without Reprogramming," J. Phys. Chem. B 115, 3371-3378 (2011). doi:10.1021/jp112045k

C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, "Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives," Adv. Mater. 22, E63-E66 (2010). doi:10.1002/adma.200903677

S. Kienle, T. Pirzer, S. Krysiak, M. Geisler, and T. Hugel, "Measuring the interaction between ions, biopolymers and interfaces – one polymer at a time," Faraday Discuss. 160, 329-340 (2013). doi:10.1039/c2fd20069d

M. Kocun, A. Labuda, A. Gannepalli, and R. Proksch, "Contact resonance atomic force microscopy imaging in air and water using photothermal excitation," Rev. Sci. Instrum. 86, 083706 (2015). doi:10.1063/1.4928105

N. T. Lawrence, J. M. Kehoe, D. B. Hoffman, C. Marks, J. M. Yarbrough, G. M. Atkinson, R. A. Register, M. J. Fasolka, and M. L. Trawick, "Combinatorial Mapping of Substrate Step Edge Effects on Diblock Copolymer Thin Film Morphology and Orientation," Macromol. Rapid Commun. 31, 1003-1009 (2010). doi:10.1002/marc.200900912

I. T. S. Li, and G. C. Walker, "Signature of hydrophobic hydration in a single polymer," PNAS 108, 16527-16532 (2011). doi:10.1073/pnas.1105450108

M. P. Nikiforov, S. Hohlbauch, W. P. King, K. Voïtchovsky, S. A. Contera, S. Jesse, S. V. Kalinin, and R. Proksch, "Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane," Nanotechnology 22, 055709 (2010). doi:10.1088/0957-4484/22/5/055709

J. Roh, D. Roy, W. Lee, A. Gergely, J. Puskas, and C. Roland, "Thermoplastic elastomers of alloocimene and isobutylene triblock copolymers," Polymer 56, 280-283 (2015). doi:10.1016/j.polymer.2014.11.015

P. Samorì, M. Surin, V. Palermo, R. Lazzaroni, and P. Leclère, "Functional polymers: scanning force microscopy insights," Phys. Chem. Chem. Phys. 8, 3927 (2006). doi:10.1039/b607502a

D. G. Yablon, A. Gannepalli, R. Proksch, J. Killgore, D. C. Hurley, J. Grabowski, and A. H. Tsou, "Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy," Macromolecules 45, 4363-4370 (2012). doi:10.1021/ma2028038

N. A. Yufa, J. Li, and S. Sibener, "Diblock copolymer healing," Polymer 50, 2630-2634 (2009). doi:10.1016/j.polymer.2009.03.037