Part of the Oxford Instruments Group
Expand

AFM for Thin Films & Coatings

Atomic force microscopy image of a thin film

Thin films and coatings play a critical role in everything from food containers to photovoltaics. To meet such varied needs, they are made from every class of materials and by numerous processes, including deposition, self-assembly, and sol-gel techniques. Atomic force microscopy is a powerful tool for characterizing thin films and coatings, providing valuable information critical to performance. It quantifies 3D roughness and texture with unmatched spatial resolution, and measures nanoscale functionality including electrical, magnetic, and mechanical properties. The intrinsic dimensions of these films (thickness, grain and domain sizes, etc.) make it important to characterize them at sub-nanometer to micrometer resolutions. In addition, the ability to measure functional properties simultaneously at these length scales has become a key aspect of thin film engineering for targeted applications. AFM provides critical information in the development, optimization, and monitoring of thin film growth processes, and in rationalizing design pathways to achieve desired functional properties.

Ask an AFM expert for more information

Metrology

  • Surface roughness
  • Uniformity, polydispersity
  • Morphology
  • Particle analysis
  • Film thickness

Mechanical Properties

  • Stiffness, Young's modulus (Force Curves, Fast Force Mapping, AM-FM, Contact Resonance)
  • Elastic modulus, loss modulus, viscoelastic loss tangent (AM-FM, Contact Resonance, Loss Tangent Imaging)
  • Energy dissipation (AM-FM, Contact Resonance, Loss Tangent Imaging, BE)

Tribological Properties

  • Friction (LFM)
  • Adhesion (Force Curves, Fast Force Mapping)
  • Wear (LFM)

Electrical Properties

  • Conductivity and permittivity (sMIM, CAFM)
  • Surface potential (KPFM)
  • Stored charge (EFM)
  • I-V profiles (CAFM, Force Mapping)
  • Dielectric breakdown (nanoTDDB)

Piezoelectric Properties

  • Electromechanical response (PFM)
  • Domain polarity (PFM)
  • Piezo-hysteresis (PFM)

Magnetic Properties

  • Magnetic force gradients (MFM)
  • Magnetic hysteresis (MFM, VFM)
  • Magnetoelectric coupling (MFM, PFM, VFM)

Thermal Properties

  • Thermal conductivity (SThM)
  • Thermomechanical response (ZTherm)
  • Phase transitions (ZTherm)

Common Uses

  • Batteries and energy storage
  • Biocompatibility 
  • Corrosion and antifouling
  • Data storage
  • Ferroelectrics and piezoelectrics
  • Optics
  • Photovoltaics
  • Semiconductor and microelectronic industries
  • Sensors and actuators including MEMS (microelectromechanical systems)
  • Tissue engineering and stem-cell research
  • Tribology

Typical Thin Film Deposition Processes

  • ALD (atomic layer deposition)
  • CVD (chemical vapor deposition)
  • MBE (molecular beam epitaxy)
  • PLD (pulsed laser deposition)
  • PVD (physical vapor deposition)
  • Self assembly
  • Sputtering
  • Spin casting
  • Thermal evaporation

S. Babar, T. T. Li, and J. R. Abelson, "Role of nucleation layer morphology in determining the statistical roughness of CVD-grown thin films," J. Vac. Sci. Technol. A 32, 060601 (2014). doi:10.1116/1.4895106

B. Cappella, and D. Silbernagl, "Nanomechanical properties of polymer thin films measured by force-distance curves," Thin Solid Films 516, 1952-1960 (2008). doi:10.1016/j.tsf.2007.09.042

G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan, "Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy," Nanoscale 4, 3218 (2012). doi:10.1039/c2nr00064d

Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, and L. Chen, "Low-Symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO3 Thin Films," Adv. Funct. Mater. 21, 133-138 (2010). doi:10.1002/adfm.201001867

K.-H. Chung, K. Bhadriraju, T. A. Spurlin, R. F. Cook, and A. L. Plant, "Nanomechanical Properties of Thin Films of Type I Collagen Fibrils," Langmuir 26, 3629-3636 (2010). doi:10.1021/la903073v

D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, "Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy," Nano Lett. 7, 738-744 (2007). doi:10.1021/nl062989e

A. R. Damodaran, S. Lee, J. Karthik, S. MacLaren, and L. W. Martin, "Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films," Phys. Rev. B 85, 024113 (2012). doi:10.1103/physrevb.85.024113

A. Duk, M. Schmidbauer, and J. Schwarzkopf, "Anisotropic one-dimensional domain pattern in NaNbO3epitaxial thin films grown on (110) TbScO3," Appl. Phys. Lett. 102, 091903 (2013). doi:10.1063/1.4794405

P. A. George, B. C. Donose, and J. J. Cooper-White, "Self-assembling polystyrene-block-poly(ethylene oxide) copolymer surface coatings: Resistance to protein and cell adhesion," Biomaterials 30, 2449-2456 (2009). doi:10.1016/j.biomaterials.2009.01.012

I. A. Golovchanskiy, A. V. Pan, S. A. Fedoseev, and M. Higgins, "Significant tunability of thin film functionalities enabled by manipulating magnetic and structural nano-domains," Appl. Surf. Sci. 311, 549-557 (2014). doi:10.1016/j.apsusc.2014.05.107

M. Gu, S. A. Wolf, and J. Lu, "Two-Dimensional Mott Insulators in SrVO3 Ultrathin Films," Adv. Mater. Interfaces 1, 1300126 (2014). doi:10.1002/admi.201300126

C. V. Hoven, X.-D. Dang, R. C. Coffin, J. Peet, T.-Q. Nguyen, and G. C. Bazan, "Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives," Adv. Mater. 22, E63-E66 (2010). doi:10.1002/adma.200903677

J. S. Keist, C. A. Orme, P. K. Wright, and J. W. Evans, "An in situ AFM Study of the Evolution of Surface Roughness for Zinc Electrodeposition within an Imidazolium Based Ionic Liquid Electrolyte," Electrochim. Acta 152, 161-171 (2015). doi:10.1016/j.electacta.2014.11.091

A. Li, S. N. Ramakrishna, P. C. Nalam, E. M. Benetti, and N. D. Spencer, "Stratified Polymer Grafts: Synthesis and Characterization of Layered `Brush' and `Gel' Structures," Adv. Mater. Interfaces 1, (2013). doi:10.1002/admi.201300007

W. Li, K. H. Hendriks, W. S. C. Roelofs, Y. Kim, M. M. Wienk, and R. A. J. Janssen, "Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films," Adv. Mater. 25, 3182-3186 (2013). doi:10.1002/adma.201300017

Y. Liu, M. Clark, Q. Zhang, D. Yu, D. Liu, J. Liu, and G. Cao, "V2O5 Nano-Electrodes with High Power and Energy Densities for Thin Film Li-Ion Batteries," Adv. Energy Mater. 1, 194-202 (2011). doi:10.1002/aenm.201000037

D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, "Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO3 Thin Films," Nano Lett. 10, 2555-2561 (2010). doi:10.1021/nl101187a

T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. R. de Celis, C. J. Hurren, and J. du Plessis, "Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion," Mater. Chem. Phys. 143, 668-675 (2014). doi:10.1016/j.matchemphys.2013.09.052

P. C. Nalam, S. N. Ramakrishna, R. M. Espinosa-Marzal, and N. D. Spencer, "Exploring Lubrication Regimes at the Nanoscale: Nanotribological Characterization of Silica and Polymer Brushes in Viscous Solvents," Langmuir 29, 10149-10158 (2013). doi:10.1021/la402148b

L. S. C. Pingree, B. A. MacLeod, and D. S. Ginger, "The Changing Face of PEDOT:PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport," J. Phys. Chem. C 112, 7922-7927 (2008). doi:10.1021/jp711838h

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol. 6, 147-150 (2011). doi:10.1038/nnano.2010.279

O. G. Reid, G. E. Rayermann, D. C. Coffey, and D. S. Ginger, "Imaging Local Trap Formation in Conjugated Polymer Solar Cells: A Comparison of Time-Resolved Electrostatic Force Microscopy and Scanning Kelvin Probe Imaging," J. Phys. Chem. C 114, 20672-20677 (2010). doi:10.1021/jp1056607

E. Sengupta, A. L. Domanski, S. A. L. Weber, M. B. Untch, H.-Jü. Butt, T. Sauermann, H. J. Egelhaaf, and Rü. Berger, "Photoinduced Degradation Studies of Organic Solar Cell Materials Using Kelvin Probe Force and Conductive Scanning Force Microscopy," J. Phys. Chem. C 115, 19994-20001 (2011). doi:10.1021/jp2048713

A. B. South, R. E. Whitmire, A. J. Garcia, and L. A. Lyon, "Centrifugal Deposition of Microgels for the Rapid Assembly of Nonfouling Thin Films," ACS Appl. Mater. Interfaces 1, 2747-2754 (2009). doi:10.1021/am9005435

F. Streller, G. E. Wabiszewski, F. Mangolini, G. Feng, and R. W. Carpick, "Tunable, Source-Controlled Formation of Platinum Silicides and Nanogaps from Thin Precursor Films," Adv. Mater. Interfaces 1, (2014). doi:10.1002/admi.201300120

F. Yan, G. Chen, L. Lu, P. Finkel, and J. E. Spanier, "Local probing of magnetoelectric coupling and magnetoelastic control of switching in BiFeO3-CoFe2O4 thin-film nanocomposite," Appl. Phys. Lett. 103, 042906 (2013). doi:10.1063/1.4816793

J. Yang, S. Yim, and T. S. Jones, "Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth," Sci. Rep. 5, 9441 (2015). doi:10.1038/srep09441

K. Voïtchovsky, S. A. Contera, M. Kamihira, A. Watts, and J. Ryan, "Differential Stiffness and Lipid Mobility in the Leaflets of Purple Membranes," Biophys. J. 90, 2075-2085 (2006). doi:10.1529/biophysj.105.072405

N. Y. Wong, C. Zhang, L. H. Tan, and Y. Lu, "Site-Specific Attachment of Proteins onto a 3D DNA Tetrahedron through Backbone-Modified Phosphorothioate DNA," Small 7, 1427-1430 (2011). doi:10.1002/smll.201100140

R. Zhang, X. Hu, H. Khant, S. J. Ludtke, W. Chiu, M. F. Schmid, C. Frieden, and J.-M. Lee, "Interprotofilament interactions between Alzheimer's Aβ1-42 peptides in amyloid fibrils revealed by cryoEM," PNAS 106, 4653-4658 (2009). doi:10.1073/pnas.0901085106