Part of the Oxford Instruments Group

AFM for Nanomechanical Measurements

Atomic force microscopy modulus map of a solder lead-tin alloy

Nanoscale mechanical properties are a key consideration in many applications, and atomic force microscopy is one of the only tools capable of measuring them. The NanomechPro™ Toolkit for Asylum Research AFMs lets you measure nanoscale mechanical properties on everything from cells to ceramics. This collection of techniques can accurately evaluate a wide range of nanomechanical behavior including elastic and viscous properties, adhesive forces, and hardness. The multiple techniques in the NanomechPro Toolkit offer greater flexibility for different applications and allow deeper insight through comparison of results. With exclusive modes that enable faster measurements of more properties, the NanomechPro Toolkit contains features for both the Cypher™ and MFP-3D™ family atomic force microscopes.

Ask an AFM expert for more information

Force Curves / Force Volume

  • Classic quasistatic method where force versus distance curves are used to provide quantitative sample information such as modulus, hardness, and adhesion

Fast Force Mapping (FFM)

  • Force versus distance mapping mode that operates up to a pixel rate of 300-1000 Hz and provides modulus, adhesion, plasticity, and other calculated properties

Amplitude Modulation-Frequency Modulation Viscoelastic Mapping (AM-FM)

  • Quantitative bimodal tapping mode measures tip-sample contact stiffness, loss tangent, and calculates elastic modulus (E’) using the Hertz model

Contact Resonance Viscoelastic Mapping (CR-AFM)

  • Contact mode imaging measurement of storage (E’) and loss (E”) moduli

Dual AC imaging

  • Qualitative bimodal tapping mode provides contrast depending on material stiffness and viscoelasticity

Loss Tangent imaging

  • Tapping mode imaging that quantifies phase data in terms of dissipated to stored energy, also known as tan δ

Force Modulation Imaging

  • Qualitative contact mode technique that measures sample deformation and provides dissipation

Force Curves / Force Volume

  • Compare elasticity of treated versus untreated biological tissues
  • Provide 2D force volume modulus maps of cells
  • Characterize mechanical properties of hydrogels


  • Quantitative force curve analysis using Hertz, JKR, DMT, and Oliver-Pharr models
  • Modulus comparison of polymeric samples while tracking sample topography


  • Local mechanical characterization of high stiffness materials
  • Steel blade, carbide, and diamond-like material modulus comparisons
  • Provides quantitative modulus of materials such as wood and bones


  • Fast, gentle, and high resolution nanomechanical information
  • Viscoelastic properties of materials ranging from cells to polymers to alloys and ceramics
  • Dissipation and elastic modulus of amyloid fibers, dielectrics, and patterned surfaces
  • Identification of polymers (PS, PE, HDPE, …) in multilayer “sandwich” materials

Dual AC imaging

  • Provides contrast on tire rubber blends
  • Visualize materials composition and components such as nanocomposites and polymer blends

Loss Tangent imaging

  • Identify barrier layers in commercial packaging materials
  • Show contrast on a range of viscoelastic materials such as polymers, composites and alloys

P. Cai, Y. Mizutani, M. Tsuchiya, J. M. Maloney, B. Fabry, K. J. V. Vliet, and T. Okajima, "Quantifying Cell-to-Cell Variation in Power-Law Rheology," Biophys. J. 105, 1093-1102 (2013). doi:10.1016/j.bpj.2013.07.035

K. Gadelrab, and M. Chiesa, "Numerically assisted nanoindentation analysis," Mater. Sci. Eng., A 560, 267-272 (2013). doi:10.1016/j.msea.2012.09.066

A. Gannepalli, D. G. Yablon, A. H. Tsou, and R. Proksch, "Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM," Nanotechnology 22, 355705 (2011). doi:10.1088/0957-4484/22/35/355705

R. Garcia, and R. Proksch, "Nanomechanical mapping of soft matter by bimodal force microscopy," Eur. Polym. J. 49, 1897-1906 (2013). doi:10.1016/j.eurpolymj.2013.03.037

E. T. Herruzo, A. P. Perrino, and R. Garcia, "Fast nanomechanical spectroscopy of soft matter," Nat. Commun. 5, 3126 (2014). doi:10.1038/ncomms4126

D. Hurley, M. Kocun, I. Revenko, B. Ohler, and R. Proksch, "Fast, quantitative AFM nanomechanical measurements using AM-FM Viscoelastoc Mapping mode," Microscopy and Analysis 29, 9-13 (2015). link to magazine

M. Kocun, A. Labuda, A. Gannepalli, and R. Proksch, "Photothermally Excited Contact Resonance Imaging in Air and Water," arXiv preprint arXiv:1410.3311 (2014). link to arXiv

G. Lamour, C. K. Yip, H. Li, and J. Gsponer, "High Intrinsic Mechanical Flexibility of Mouse Prion Nanofibrils Revealed by Measurements of Axial and Radial Young's Moduli," ACS Nano 8, 3851-3861 (2014). doi:10.1021/nn5007013

Q. Li, S. Jesse, A. Tselev, L. Collins, P. Yu, I. Kravchenko, S. V. Kalinin, and N. Balke, "Probing Local Bias-Induced Transitions Using Photothermal Excitation Contact Resonance Atomic Force Microscopy and Voltage Spectroscopy," ACS Nano 9, 1848-1857 (2015). doi:10.1021/nn506753u

V. Milkevych, B. Donose, N. Juste-Poinapen, and D. Batstone, "Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina," Colloids Surf., B 126, 303-312 (2015). doi:10.1016/j.colsurfb.2014.12.035

A. M. A. Moustafa, J. Huang, K. N. McPhedran, H. Zeng, and M. G. El-Din, "Probing the Adsorption of Weak Acids on Graphite Using Amplitude Modulation-Frequency Modulation Atomic Force Microscopy," Langmuir 31, 3069-3075 (2015). doi:10.1021/la5048968

R. Proksch, "Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy," Appl. Phys. Lett. 89, 113121 (2006). doi:10.1063/1.2345593

R. Proksch, and D. G. Yablon, "Loss tangent imaging: Theory and simulations of repulsive-mode tapping atomic force microscopy," Appl. Phys. Lett. 100, 073106 (2012). doi:10.1063/1.3675836

A. Raman, S. Trigueros, A. Cartagena, A. P. Z. Stevenson, M. Susilo, E. Nauman, and S. A. Contera, "Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy," Nat. Nanotechnol. 6, 809-814 (2011). doi:10.1038/nnano.2011.186

V. Vadillo-Rodriguez, T. J. Beveridge, and J. R. Dutcher, "Surface Viscoelasticity of Individual Gram-Negative Bacterial Cells Measured Using Atomic Force Microscopy," J. Bacteriol. 190, 4225-4232 (2008). doi:10.1128/jb.00132-08

D. G. Yablon, A. Gannepalli, R. Proksch, J. Killgore, D. C. Hurley, J. Grabowski, and A. H. Tsou, "Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy," Macromolecules 45, 4363-4370 (2012). doi:10.1021/ma2028038