Part of the Oxford Instruments Group

Asylum Research Webinar: Contact Resonance Tools for Nanomechanics



Nanoscale information on mechanical properties is critical for many advanced materials and nanotechnology applications. Atomic force microscopy techniques for probing mechanical properties of samples in the nanometer range have emerged over the past decades. In contrast to the large number of techniques for softer samples, few techniques are capable of measuring moduli in the 1-200 GPa range. One technique, Contact Resonance (CR), has proven to work very well in this range. CR methods operate in contact mode with dynamic excitation near a cantilever resonant frequency, enabling sensitive measurements over a wide range of materials. Moreover, analysis of the CR peak frequency and quality factor yields accurate, quantitative data on elastic modulus and viscoelastic damping.

In this webinar, we’ll explain the basic concepts of measurements with different CR approaches including:

  • Point spectroscopy
  • Qualitative contrast imaging
  • Quantitative mapping

We’ll also discuss practical implementation of contact resonance to a variety of samples and some of the pitfalls and artifacts you might encounter. Finally, we’ll present results on how CR methods have been used to improve understanding of systems such as:

  • Composites
  • Thin films
  • Biomaterials
  • Polymer blends

The nanomechanical characterization capabilities of CR methods, as you will come to learn, are an essential tool for the development, production, and in-situ monitoring of today’s and tomorrow’s materials.

About Your Lecturers:

Dr. Donna Hurley leads the AFM Nanomechanics Project in the Material Measurement Laboratory at the National Institute of Standards & Technology (NIST) in Boulder, CO. Her project team creates and applies AFM measurement technology for material-property characterization. For over 10 years, she has developed contact resonance AFM modes for quantitative nanomechanical imaging. She is author or co-author of numerous technical articles, including chapters in the recently released Scanning Probe Acoustic Techniques (Springer-Verlag, 2012) and the upcoming SPM in Industrial Applications: Nanomechanical Characterization (John Wiley & Sons, 2013). She has a Ph.D. in Physics from the University of Illinois at Urbana-Champaign. Prior to NIST, she worked at GE Corporate Research (Schenectady, NY) and the University of Nottingham (UK).

Dr. Roger Proksch is President and co-founder of Asylum Research, an Oxford Instruments company. He has over 20 years of AFM experience. He has co-authored many papers and is a co-inventor on numerous AFM patents. He received his Ph.D. from the University of Minnesota.

Ask for more information